Tuesday, August 22, 2017

[Paleontology • 2017] Shringasaurus indicus • A New Horned and Long-necked Herbivorous Stem-Archosaur from the Middle Triassic of India

Shringasaurus indicus 
Sengupta, Ezcurra & Bandyopadhyay, 2017

Illustration: Gabriel Lio
   DOI: s41598-017-08658-8 

The early evolution of archosauromorphs (bird- and crocodile-line archosaurs and stem-archosaurs) represents an important case of adaptive radiation that occurred in the aftermath of the Permo-Triassic mass extinction. Here we enrich the early archosauromorph record with the description of a moderately large (3–4 m in total length), herbivorous new allokotosaurian, Shringasaurus indicus, from the early Middle Triassic of India. The most striking feature of Shringasaurus indicus is the presence of a pair of large supraorbital horns that resemble those of some ceratopsid dinosaurs. The presence of horns in the new species is dimorphic and, as occurs in horned extant bovid mammals, these structures were probably sexually selected and used as weapons in intraspecific combats. The relatively large size and unusual anatomy of Shringasaurus indicus broadens the morphological diversity of Early–Middle Triassic tetrapods and complements the understanding of the evolutionary mechanisms involved in the early archosauromorph diversification.

Figure 3: Skeletal anatomy of Shringasaurus indicus gen. et sp. nov. (a) Left premaxilla (ISIR 793) in lateral view. (b) Left maxilla (ISIR 795) in lateral view. (c) Left quadrate (ISIR 797) in lateral view. (d) Axis (ISIR 803) in left lateral view. (e) Posterior cervical vertebra (ISIR 820) in left lateral view. (f,g) Anterior dorsal vertebra (ISIR 825) in left lateral view in (f), and anterior view in (g). (h) Two anterior caudal vertebrae (ISIR 875) in right lateral view (mirrored). (i) Posterior caudal vertebra (ISIR 892) in left lateral view. (j) Right femur (ISIR 1016) in ventral view. (k) Left ilium (ISIR 991) in lateral view. (l), (m) Right astragalus and fused lateral centrale (ISIR 1059) in proximal view in (l), and dorsal view in (m). (n) Interclavicle (ISIR 950) in ventral view. (o) Left clavicle (ISIR 948) in medial view. (p) Left humerus (ISIR 951) in ventral view. (q) Left scapula (ISIR 929) and coracoid (ISIR 941) in lateral view. (r) Tooth crown (ISIR 801A) in labial view.

Scales = 1 cm for (a–c,i,m,l), 2 cm for (d–h,j,k,n–q), and 1 mm for (r), and skeleton = 25 cm. a. articulates with; ac, acetabulum; ain, axial intercentrum; ap, anterior process; ca, calcaneum; ce, lateral centrale; de, denticles; dpc, deltopectoral crest; fi, fibula; gf, glenoid fossa; gr, groove; hqh, hooked quadrate head; icl, interclavicle; itr, internal trochanter; la, lacrimal; lp, lateral process; mp, mammillary process; nag, non-articular gap; pcdl, posterior centrodiapophyseal lamina; pgp, postglenoid process; pnp, postnasal process; pof, popliteal fossa; pop, postacetabular process; pp, parapophysis; ppr, posterior process; ppdl, paradiapophyseal lamina; prdl, prezygodiapophyseal lamina; prp, preacetabular process; prz, prezygapophysis; qj, quadratojugal; sac, supraacetabular crest; sc, scapula; sgl, subglenoid lip; spdl, spinodiapophyseal lamina; sprdl, spinoprezygapophyseal lamina; ti, tibia.

Figure 2: Cranial anatomy of Shringasaurus indicus gen. et sp. nov. and comparison with the skull of a ceratopsid dinosaur that possesses convergent supraorbital horns. (a) Reconstruction of the skull of Shringasaurus indicus in left lateral view. (b) Drawing of the skull of Arrhinoceratops brachyops in left lateral view (based on ROM 79648). (c) Reconstruction of the skull of Shringasaurus indicus in dorsal view. (d–g) Partial skull tables of Shringasaurus indicus in dorsal views (ISIR 781, 780, 786, 789, 790 from left to right), one side has been digitally mirrored in (d–f). (h–k) Partial skull tables of Shringasaurus indicus in left lateral views (ISIR 781, 780, 786, 790 from left to right). Specimens (d–f) and (h–j) possesses horns and specimen/s (g) and (k) lacks horns.
Scales = 4 cm for (a) and ( c–k), and 20 cm for (b). en, external naris; ho, horn; or, orbit; stf, supratemporal fenestra.

Figure 4: Phylogenetic relationships of Shringasaurus indicus gen. et sp. nov. and evolution of body size among early archosauromorphs. (a) Time calibrated strict consensus tree found in the data set analysed here (Supplementary Information). Diapsids more basal than Protorosaurus are not shown and all clades except Allokotosauria have been collapsed for clarity. Numbers at the nodes are Bremer support values higher than 1. (b) Evolution of femoral length (as proxy of body size) optimized as a continuous character using maximum parsimony among non-archosauriform archosauromorphs (Supplementary Information). The horizontal axis represents phylogenetic distance. Green circles represent non-allokotosaurian species, red circles represent allokotosaurians, light blue circles represent non-allokotosaurian ancestral femoral lengths, and violet circles represent allokotosaurian ancestral femoral lengths. The dotted line represents a branch not included in the phylogenetic analysis of this study and the horizontal bar with dotted vertical lines on the right side of the graphic represents the median and standard deviation of Permian to Middle Triassic non-allokotosaurian, non-archosauriform archosauromorph femoral length. a, Crocopoda; b, Allokotosauria; c, Trilophosauridae; d, Azendohsauridae; e, Azendohsaurus.

Systematic Palaeontology

Diapsida Osborn, 1903
Archosauromorpha Huene, 1946 sensu Dilkes19

Allokotosauria Nesbitt et al., 2015
Azendohsauridae Nesbitt et al., 2015

Shringasaurus indicus gen. et sp. nov.

Etymology: Śṛṅga’ (Shringa), horn (ancient Sanskrit), and ‘sauros’ (σαῦρος), lizard (ancient Greek), referring to the horned skull; ‘indicus’, Indian (Latin English), refers to the country where such species was discovered.

Holotype: ISIR (Indian Statistical Institute, Reptile, India) 780: partial skull roof (prefrontal, frontal, postfrontal, and parietal) with a pair of large supraorbital horns (Fig. 2e,i).

Locality and horizon: Near Tekapar village, Hoshangabad district, Madhya Pradesh, India (Fig. 1); Denwa Formation, Anisian, early Middle Triassic18, Satpura Gondwana Basin.

Diagnosis: Relatively large (3–4 m total body length; Fig. S1) allokotosaurian archosauromorph that differs from other stem-archosaurs in the following combination of character-states: confluent external nares; pair of anterodorsally oriented supraorbital horns; similar sized and leaf-shaped marginal and palatal teeth with large denticles; middle-posterior cervical, dorsal, and at least the first two caudal vertebrae with mammillary processes on the neural spines; middle-posterior cervical, dorsal, and sacral vertebrae with hyposphene-hypantrum accessory articulations; cervical vertebrae 2–5 with epipophyses (unknown in Cv6); dorsal vertebrae with spinoprezygapophyseal and spinopostzygapophyseal laminae; dorsal vertebrae 1–12 with spinodiapophyseal laminae; anterior dorsal vertebrae with neural spines two times taller than its respective centrum (see Supplementary Information for differential diagnosis).

Shringasaurus indicus Sengupta, Ezcurra & Bandyopadhyay, 2017
Illustration: Gabriel Lio 

Saradee Sengupta, Martín D. Ezcurra and Saswati Bandyopadhyay. 2017. A New Horned and Long-necked Herbivorous Stem-Archosaur from the Middle Triassic of India.  Scientific Reports. 7, Article number: 8366.  DOI: s41598-017-08658-8

 Cómo era el mundo cuando vivía el Shringasaurus indicus 
lanacion.com.ar/2055099 via @LANACION
Encuentran en India un reptil con cuernos de 240 millones de años  conicet.gov.ar/encuentran-en-india-un-reptil-con-cuernos-de-240-millones-de-anos/

[Herpetology • 2017] Nasikabatrachus bhupathi • A New Species of the Genus Nasikabatrachus (Anura, Nasikabatrachidae) from the eastern Slopes of the Western Ghats, India

Nasikabatrachus bhupathi 
Janani, Vasudevan, Prendini, Dutta & Aggarwal, 2017

We describe a new species of the endemic frog genus Nasikabatrachus, from the eastern slopes of the Western Ghats, in India. The new species is morphologically, acoustically and genetically distinct from N. sahyadrensis. Computed tomography scans of both species revealed diagnostic osteological differences, particularly in the vertebral column. Male advertisement call analysis also showed the two species to be distinct. A phenological difference in breeding season exists between the new species (which breeds during the northeast monsoon season; October to December), and its sister species (which breeds during the southwest monsoon; May to August). The new species shows 6 % genetic divergence (K2P) at mitochondrial 16S rRNA (1330 bp) partial gene from its congener, indicating clear differentiation within Nasikabatrachus. Speciation within this fossorial lineage is hypothesized to have been caused by phenological shift in breeding during different monsoon seasons—the northeast monsoon in the new species versus southwest monsoon in N. sahyadrensis. It is postulated that proximate triggers of breeding behavior and highly stenotopic adaptation of Nasikabatrachus tadpoles to inhabit cascades during monsoonal stream flows, have led to allopatry on the eastern and western slopes of the Western Ghats, thereby promoting speciation in this ancient genus.

Figure 3. Holotype of Nasikabatrachus bhupathi. (a) dorsolateral view; (b) anterior view of head showing fleshy protuberance on the snout; (c) underside of foot, showing hypertrophied shovel-shaped inner metatarsal tubercle; (d) underside of hand showing palmar tubercles.

Nasikabatrachus bhupathi sp. nov.

Etymology: The species epithet commemorates Dr. S. Bhupathy, a noted scientist and a field herpetologist, who passed away due to an ill-fated accident while conducting herpetological surveys in Agasthyamalai, Western Ghats on April 28, 2014.


S. Jegath Janani, Karthikeyan Vasudevan, Elizabeth Prendini, Sushil Kumar Dutta and Ramesh K. Aggarwal. 2017. A New Species of the Genus Nasikabatrachus (Anura, Nasikabatrachidae) from the eastern Slopes of the Western Ghats, India. Alytes. 34: 1-19.

[Herpetology • 2017] Theloderma pyaukkya • A New Cryptic Species of the Theloderma asperum Complex (Anura: Rhacophoridae) from Myanmar

Theloderma pyaukkya Dever, 2017

I describe a new species of Theloderma from two regions in Myanmar (Chin State in western Myanmar and Kachin State in northern Myanmar). Highly similar in appearance and size to Theloderma albopunctatum and Theloderma asperum, the new species differs by the presence of small, bilateral vocal sac openings absent in T. albopunctatum and T. asperum. Molecular phylogenetic analysis from two mitochondrial and four nuclear gene fragments infers that individuals are members of a unique genetic lineage within the T. asperum Complex.

FIG. 6. Theloderma pyaukkya sp. nov., paratype CAS 234869, adult male, dorsolateral view. 

Theloderma pyaukkya sp. nov. 
Burmese Camouflaged Tree Frog

Etymology.— Specific epithet pyaukkya (pronounced pee-ew-cha) is Burmese for camouflaged, which reflects the frog’s cryptic coloration.

Jennifer A. Dever. 2017. A New Cryptic Species of the Theloderma asperum Complex (Anura: Rhacophoridae) from Myanmar. Journal of Herpetology. 51(3); 425–436.  DOI: 10.1670/17-026


[PaleoOrnithology • 2017] Leucocarbo septentrionalis • Speciation, Range Contraction and Extinction in the Endemic New Zealand King Shag Complex

Leucocarbo septentrionalis
Rawlence, Till, Easton, Spencer, Schuckard, Melville, Scofield, Tennyson, Rayner & Waters, 2017

Kohatu Shag || DOI: 10.1016/j.ympev.2017.07.011 

• New Zealand King Shag occupied a ‘relict’ distribution for at least the past 240 years.
• Ancient DNA indicates drop in genetic variability and range shortly after human arrival.
• Leucocarbo from northern New Zealand represent new extinct species, Kohatu Shag.
• New Zealand biodiversity hotspot for Phalacrocoracidae.

New Zealand’s endemic King Shag (Leucocarbo carunculatus) has occupied only a narrow portion of the northeastern South Island for at least the past 240 years. However, pre-human Holocene fossil and archaeological remains have suggested a far more widespread distribution of the three Leucocarbo species (King, Otago, Foveaux) on mainland New Zealand at the time of Polynesian settlement in the late 13th Century CE. We use modern and ancient DNA, and morphometric and osteological analyses, of modern King Shags and Holocene fossil Leucocarbo remains to assess the pre-human distribution and taxonomic status of the King Shag on mainland New Zealand, and the resultant conservation implications. Our analyses show that the King Shag was formerly widespread around southern coasts of the North Island and the northern parts of the South Island but experienced population and lineage extinctions, and range contraction, probably after Polynesian arrival. This history parallels range contractions of other New Zealand seabirds. Conservation management of the King Shag should take into account this species narrow distribution and probable reduced genetic diversity. Moreover, combined genetic, morphometric and osteological analyses of prehistoric material from mainland New Zealand suggest that the now extinct northern New Zealand Leucocarbo populations comprised a unique lineage. Although these distinctive populations were previously assigned to the King Shag (based on morphological similarities and geographic proximity to modern Leucocarbo populations), we herein describe them as a new species, the Kohatu Shag (Leucocarbo septentrionalis). The extinction of this species further highlights the dramatic impacts Polynesians and introduced predators had on New Zealand’s coastal and marine biodiversity. The prehistoric presence of at least four species of Leucocarbo shag on mainland NZ further highlights its status as a biodiversity hotspot for Phalacrocoracidae.

Keywords: Ancient DNA; Extinct; Holocene fossil; King Shag; Kohatu Shag; Leucocarbo carunculatusLeucocarbo septentrionalis; New species; New Zealand

Fig. 8. Cranial skeletal elements of the holotype of Kohatu Shag (Leucocarbo septentrionalis; NMNZ S.34434). (a) Lateral view; (b) Dorsal view; (c) Ventral view. 

 Systematic palaeontology


LEUCOCARBO Bonaparte, 1857
 [type species (by subsequent designation, Ogilvie-Grant, 1898) Carbo bougainvillii Lesson, 1837]


English name: Kohatu Shag; Maori name: Kawau Kohatu

Type locality: Tokerau Beach, Doubtless Bay, Northland, New Zealand.

Etymology: septentrionalis from the medieval Latin for northern. This specific name recognises that this was the northernmost New Zealand member of the genus Leucocarbo. The name Kawau Kohatu in Maori is derived from the phrase ‘Te Ao Kohatu’ and means ‘shag [Kawau] from the stone age before our time [Te Ao Kohatu]’. The name recognises the species was found in Holocene fossil deposits of the iwi Ngati Kuri’s tribal area.

Distribution: Formerly of Northland, New Zealand.

Nicolas J. Rawlence, Charlotte E. Till, Luke J. Easton, Hamish G. Spencer, Rob Schuckard, David S. Melville, R. Paul Scofield, Alan J.D. Tennyson, Matt J. Rayner and Jonathan M. Waters. 2017. Speciation, Range Contraction and Extinction in the Endemic New Zealand King Shag Complex.  Molecular Phylogenetics and Evolution. in press. DOI: 10.1016/j.ympev.2017.07.011

Another extinct bird: Northland’s unique shag  blog.tepapa.govt.nz/2017/08/14/another-extinct-bird-northlands-unique-shag via @te_papa
Hiding in plain sight: how we found New Zealand’s newest seabird, the Kōhatu Shag"  sciblogs.co.nz/guestwork/2017/08/14/kohatu-shag   @sciblogsnz 


[Ichthyology • 2017] Schistura thavonei • A New Species of Loach (Teleostei: Nemacheilidae) from northwestern Laos

 Schistura thavonei  Kottelat, 2017


 Schistura thavonei, new species, is described from the Nam Ma, Mekong drainage, in Louang Namtha Province, northwestern Laos. It is distinguished from all other Nemacheilidae by its unique colour pattern made of two broad dark brown stripes (one middorsal, one midlateral) and between them a pale yellowish-brown stripe (iridescent in life); a row of 12–24 short black bars are located increasingly lower on the flank from head to tail, posterior-most ones restricted to the lower half of the body or forming blotches along the ventral midline of the caudal peduncle. Besides, it has an elongate body with a hump immediately behind the head, 8+7 branched caudalfin rays; and 9–10 total pectoral-fin rays. It was found in riffles, over gravel to stone bottom. 

Key words. Cobitoidei, Schistura, Laos, Mekong basin, stone loach

Diagnosis. Schistura thavonei is distinguished from the other species of the genus by its unique colour pattern made of two broad dark brown stripes (one middorsal, one midlateral) and between them a pale yellowish-brown stripe (iridescent copper to orange in life) from the upper extremity of the gill opening to the upper half of the base of the caudal fin; overimposed to the midlateral stripe, a row of 12–24 short black bars, located increasingly lower on the flank from head to tail, posterior-most ones restricted to the lower half of the body or forming blotches along the ventral midline of the caudal peduncle. Additional characters useful for identification but not unique to the species are: body very elongate (depth 6.2–7.2 times in SL), with a marked hump behind the head; male without suborbital flap; 8+7 branched caudal-fin rays; 7½ branched dorsal fin rays; 9–10 pectoral-fin rays.

Notes on biology. A dissected female (CMK 25066, 46.6 mm SL) had unripe ovaries with white, irregular, not mature, ova about 1.0 mm diameter. The stomach of a 42.4 mm SL specimen was filled with insect larvae about 2–5 mm long. Schistura thavonei was observed in clear water [as expected for a benthic fish with bright coloration and contrasted pattern]. At all sites, S. thavonei has been collected in stretches of streams with riffles (in the sheltered parts with somewhat quieter current), over gravel to stone bottom (Fig. 7).

Distribution. Schistura thavonei is presently known only from the watershed of the Nam Ma in Louang Namtha Province, a tributary of the Mekong, in northeastern Laos (not to be confused with the Nam Ma in Houa Phan Province, which flows to Vietnam and enters the Gulf of Tonkin).

Etymology. The species is named for Mr. Thavone Phommavong, in appreciation for his help and companionship during several, and sometimes difficult, fish surveys in Laos. A noun in genitive.

Maurice Kottelat. 2017. Schistura thavonei, A New Species of Loach from northwestern Laos (Teleostei: Nemacheilidae). RAFFLES BULLETIN OF ZOOLOGY. 65: 395–403

[Ichthyology • 2017] Five New Species of Marine Gobies of the Genus Grallenia (Teleostei: Gobiidae) from the tropical western Pacific Ocean

Grallenia rubrilineata  Allen & Erdmann, 2017


Five new species belonging to the gobiid fish genus Grallenia of the tropical western Pacific Ocean are described from sand-bottom habitats. Grallenia compta n. sp. (11 specimens, 14.9–17.3 mm SL) from Milne Bay Province, Papua New Guinea and Grallenia rubrilineata n. sp. (81 specimens, 8.8–15.8 mm SL) from Luzon, Philippines share a suite of features that comprises an absence of cephalic sensory-canal pores, a rectangular first dorsal fin without a filamentous extension of the first spine, and the anterior and posterior scales separated by a scaleless gap, with 15–22 longitudinal scales in the posterior series. The two species differ from each other in dorsal- and anal fin-ray counts (8–9 for G. compta n. sp. vs. 9–11, usually 10, for G. rubrilineata n. sp.), scalation patterns, and coloration. A third new species, Grallenia dimorpha n. sp. (34 specimens, 9.8–16.7 mm SL) from Papua New Guinea is similar, except it has a continuous series of longitudinal scales without a gap, and females possess a triangular first dorsal fin featuring a filamentous extension of the first spine. The last two species, Grallenia lauensis n. sp. (two females, 11.1–11.4 mm SL) and Grallenia solomonensis n. sp. (three females, 11.4–12.5 mm SL), are described from Fiji and the Solomon Islands, respectively. They exhibit similar diagnostic features including the presence of cephalic sensory-canal pores, usually 7 segmented dorsal- and anal-fin rays, and most body scales restricted to the caudal peduncle. Grallenia solomonensis n. sp. differs from G. lauensis n. sp. in having several mid-lateral scales immediately behind the pectoral-fin base (vs. none), 16 (vs. 15) pectoral-fin rays, pelvic-fin rays with 2–3 branch points (vs. a single point), and a truncate (vs. slightly emarginate) caudal fin. An additional 33 non-type specimens, 7.0–15.6 mm SL, from Australia (southern Great Barrier Reef and northwestern Coral Sea) are provisionally identified as G. lauensis n. sp. However, at least some Australian specimens differ slightly in possessing branched segmented dorsal-fin rays and pelvic-fin rays with more than one branch point. Although fins are damaged in most specimens, two Australian males exhibit a long, filamentous first dorsal-fin spine.

Key words: taxonomy, systematics, ichthyology, coral-reef fishes, Indo-Pacific Ocean, Papua New Guinea, Philippines, Solomon Islands, Fiji, Australia, sand habitat

Grallenia compta, n. sp.
 Ornamented Goby

Etymology. The species is named compta (Latin: ornamented), with reference to the orange markings on the head, body, and fins. It is treated as a feminine singular adjective.

Distribution and habitat. The new species is currently known only from Sideia Island in Milne Bay Province of Papua New Guinea (Fig. 6), but is no doubt more widespread in this large marine province. The habitat consists of large (5–10 m2 ), flat, sandy areas surrounded by live coral, in depths of about 14–15 m.

Figure 5: Adult males of species of Grallenia: A) G. compta; B) G. dimorpha; C) G. rubrilineata (G.R. Allen & M.V. Erdmann).

Figure 10. Grallenia dimorpha, male (upper) and female (lower), approx. 15 mm SL, underwater photographs in 16 m, White Island, West New Britain Province, Papua New Guinea (G.R. Allen). 

Grallenia dimorpha, n. sp.
 Dimorphic Goby

Etymology. The species is named dimorpha (Latin: two shapes) with reference to the sexual dimorphism in relation to dorsal-fin shape. It is treated as a feminine singular adjective. 

Distribution and habitat. The new species is currently known only from Papua New Guinea (Fig. 6). The type series was collected off the southern coast of New Britain Island and the non-type specimens from the vicinity of Madang and near Port Moresby. The habitat consists of sandy substrate in about 8–18 m.

Figure 14. Grallenia lauensis, female, approx. 11 mm SL, underwater photographs in 30–35 m, Lau Archipelago, Fiji (M.V. Erdmann). 

Grallenia lauensis, n. sp. 
Lau Goby

Etymology. The species is named lauensis with reference to the Lau Archipelago type locality. 

Distribution and habitat. The new species is currently known from the southern Lau Archipelago of southeastern Fiji and 33 non-type specimens from the Great Barrier Reef and northwestern Coral Sea. The Lau habitat consists of extensive gradual slopes of clean white sand in 30–35m depth. Both Lau sites were located in channel passes from the outer reef to extensive inner lagoons, and were hence subject to frequent strong currents and high rates of water exchange.

Figure 18. Grallenia rubrilineata, male (right), female (center), and juvenile (left) approx. 8–15 mm SL, underwater photograph in 15 m, Ligpo Island near Anilao, Batangas Province, Philippines (G.R. Allen).

Grallenia rubrilineata, n. sp. 
Redstripe Goby

Etymology. The species is named rubrilineata (Latin: “red-lined” or “red-striped”), with reference to the characteristic marking on the dorsal fin of adult males. It is treated as a feminine compound adjective.

 Distribution and habitat. The new species is currently known from the Philippines, including the type locality near Anilao in Batangas Province, Luzon, and on the basis of a photograph from Dauin, Negros in the Central Visayas Group. A female specimen examined at WAM (P.30410-015), 18 mm SL, from Bohaydulong Island, Sabah State, Malaysia is probably G. rubrilineata, judging from fin-ray counts, scale pattern, and lack of head pores; however, additional specimens, including males, would be required to verify this identification. The habitat at Anilao consists of extensive areas of sand/silt substrate in about 12–15 m. The new species was very abundant in some areas, including the type locality, with an estimated abundance of 10–15 individuals per square meter. It was typically seen in small groups.

Grallenia solomonensis, n. sp. 
Solomons Goby

Etymology. The species is named solomonensis with reference to the Solomon Islands type locality.

Gerald R. Allen and Mark V. Erdmann. 2017. Description of Five New Species of Marine Gobies (Teleostei: Gobiidae) of the Genus Grallenia from the tropical western Pacific Ocean. Journal of the Ocean Science Foundation. 27; 20–47.  http://www.oceansciencefoundation.org/josf27c.html

Monday, August 21, 2017

[Entomology • 2017] Pyrophleps ellawi • A New Species of Wasp-mimicking Clearwing Moth (Lepidoptera, Sesiidae) from Peninsular Malaysia with DNA Barcode and Behavioural Notes

 Pyrophleps ellawi Skowron Volponi, 2017

Figure 1. Pyrophleps ellawi has a strong blue sheen in sunlight. Representatives of this species vary in the number of orange scales on the thorax. The scales form two longitudinal stripes, either dashed or solid.

A new species of clearwing moth, Pyrophleps ellawi Skowron Volponi, sp. n., is described from Peninsular Malaysia. Information on the habitat, time and conditions of occurrence, flight and mud-puddling behaviour, functional morphology, and DNA barcode are also provided. Photographs and a supplementary video from the wild demonstrate the postures and behaviour of this species of Pyrophleps, whose remaining members were described only on the basis of pinned specimens. This is the first record of this genus in Peninsular Malaysia.

Keywords: Sesiidae, clearwing moth, Pyrophleps ellawi, mimicry, mud-puddling, behaviour, Malaysia

Figure 3. Male holotype of Pyrophleps ellawi.

Diagnosis: The new species is superficially most similar to Pyrophleps vitripennis, from which it can easily be distinguished by the configuration of male genitalia (compare Fig. 4 herein with Arita and Gorbunov 2000, fig. 6), presence of hair-like scales on labial palpi (smoothly scaled in species compared), presence of orange hair-like scales on fore- and mid tibiae and lack of orange scales on wings, broader external transparent area of forewing. Apart from morphological features, P. ellawi shows 8% COI sequence divergence from P. vitripennis (Table 1). Based on genitalia configuration, this species is most similar to P. nigripennis. However, it differs in the shape of the valva and gnathos. Besides that, it can immediately be distinguished by the well-developed transparent areas of forewing (compare Fig. 3 herein with Arita and Gorbunov 2000, fig. 8), narrow discal spot on hindwing and by the colouration of the hind leg tuft (extensive red both externally, on tibia, and internally, on tibiae and tarsi, in P. nigripennis). From P. ruficrista it differs in more developed forewing ATA and PTA and less developed ETA and in the hind leg tuft (cinnabar red with two black spots and patches of blue scales in P. ruficrista). From P. cruentata, P. haematochrodes , P. cucphuonganae and P. bicella, it can be distinguished by the entirely transparent hindwings and absence of red scales on wings and abdomen.

Figure 1. Pyrophleps ellawi has a strong blue sheen in sunlight. Representatives of this species vary in the number of orange scales on the thorax. The scales form two longitudinal stripes, either dashed or solid. 

Figure 2. Pyrophleps ellawi puddling on a river bank. Note the curled-up hind leg tarsi.

Etymology: The species is named after our dear friend El Law, a dedicated conservation activist with sincere sensibility for Malaysian nature who, over the years of our studies on Malaysian Sesiidae, offered us his help in countless aspects.

Distribution and habitat: In addition to the type locality, the species is known also from the Taman Negara National Park, Malaysia, where it was observed and filmed in two locations approx. 50 km from each other. All observations were done on sandy and pebble river banks exposed to sunlight, in a lowland dipterocarp forest (Fig. 5)

Figure 5. Habitat of Pyrophleps ellawi: sandy/pebble river banks in a lowland dipterocarp forest, Malaysia.

The new wasp-mimicking species of Sesiidae, Pyrophleps ellawi, represents the first record of the genus Pyrophleps in Peninsular Malaysia and the first filmed in the wild. The video realized in its habitat provided valuable information on its authentic habitus, functional morphology, and behaviour.

 Marta Skowron Volponi and Paolo Volponi. 2017. A New Species of Wasp-mimicking Clearwing Moth from Peninsular Malaysia with DNA Barcode and Behavioural Notes (Lepidoptera, Sesiidae). ZooKeys. 692: 129-139.  DOI: 10.3897/zookeys.692.13587

[Ichthyology • 2017] Channa pseudomarulius • A Valid Species of Snakehead from the Western Ghats region of Peninsular India (Teleostei: Channidae), with Comments on Ophicephalus grandinosus, O. theophrasti and O. leucopunctatus

Channa pseudomarulius (Günther, 1861)
 subadult, 164 mm SL, Kerala, Pamba River, not preserved.


An investigation integrating morphological and molecular data to address the taxonomic status of Indian Channa marulius-like fishes reveals the presence of two species within Indian Rivers. As a consequence, Channa pseudomarulius is resurrected as a valid species and removed from the synonymy of C. marulius. Channa pseudomarulius appears to be restricted to the southern Western Ghats region of peninsular India and can be distinguished from the more widespread C. marulius by fewer lateral-line scales, fewer dorsal- and anal-fin rays, fewer vertebrae, and by a difference of about 8% in mitochondrial cytochrome c oxidase subunit 1 gene sequences. Channa marulius and C. pseudomarulius both possess low levels of genetic diversity across their range suggestive of small historical population sizes. This is especially interesting in the case of C. marulius, which is shown to have a large natural geographical range spanning at least the Indian subcontinent and parts of the Indo-Burman ranges in westernmost Myanmar. The synonymy of Channa marulius with Ophicephalus grandinosusO. theophrasti, and O. leucopunctatus is confirmed based on examination of type specimens. A lectotype is designated for O. grandinosus.

Keywords: Pisces, CO1, DNA barcoding, Integrative taxonomy, Kerala, Morphometry


FIGURE 3. Channa pseudomarulius, colouration in life.
Juvenile (A), KUFOS 2017. KUT. 15, ca. 55 mm SL, Kerala, Kuttiyadi river; juvenile (B) ca. 80 mm SL, Kerala, Irrity, not preserved; subadult (C), 164 mm SL, Kerala, Pamba River, not preserved. 

FIGURE 3. Channa pseudomarulius, colouration in life.  Juvenile (A), KUFOS 2017. KUT. 15, ca. 55 mm SL, Kerala, Kuttiyadi river; juvenile (B) ca. 80 mm SL, Kerala, Irrity, not preserved; subadult (C), 164 mm SL, Kerala, Pamba River, not preserved. 

FIGURE 6. Original illustration (A) of Ophicephalus grandinosus reproduced from Cuvier & Valenciennes (1831) and lateral view (B) of lectotype (MNHN A 1959, 564 mm SL). Original illustration (C) of O. theophrasti reproduced from Jacquemont (1839) and lateral view (D) of holotype (MNHN A- 668, 330 mm SL). Reproduction of Sykes' (1841) original illustration of O. leucopunctatus (E). 

Ralf Britz, Eleanor Adamson, Rajeev Raghavan, Anvar Ali and Neelesh Dahanukar. 2017. Channa pseudomarulius, A Valid Species of Snakehead from the Western Ghats region of Peninsular India (Teleostei: Channidae), with Comments on Ophicephalus grandinosusO. theophrasti and O. leucopunctatusZootaxa. 4299(4); 529–545. DOI:  10.11646/zootaxa.4299.4.4