Friday, July 21, 2017

[Paleontology • 2017] Aepyornithomimus tugrikinensis • First Ornithomimid (Theropoda, Ornithomimosauria) from the Upper Cretaceous Djadokhta Formation of Tögrögiin Shiree, Mongolia


Aepyornithomimus tugrikinensis
Tsogtbaatar, Kobayashi, Khishigjav, Currie, Watabe & Rinchen, 2017

Illustration by Masato Hattori

Abstract
The Upper Cretaceous Djadokhta Formation has been intensively surveyed for its fossil vertebrate fauna for nearly a century. Amongst other theropods, dromaeosaurids and parvicursorines are common in the formation, but ornithomimosaurs are extremely rare. A new ornithomimosaur material was discovered from the Djadokhta Formation, represented by eolian deposits, of the Tögrögiin Shiree locality, Mongolia. This is only the third ornithomimosaur specimen reported from this formation, and includes the astragalus, the calcaneum, the third distal tarsal, and a complete pes. The new material is clearly belonged to Ornithomimidae by its arctometatarsalian foot condition and has the following unique characters; unevenly developed pair of concavities of the third distal tarsal, curved contacts between the proximal ends of second and fourth metatarsals, the elongate fourth digit, and a laterally inclined medial condyle on phalanx IV-1. These diagnostic characters of the Djadokhtan ornithomimosaur indicate that this is a new taxon. Our phylogenetic analysis supports three clades within derived ornithomimosaurs, and the new taxon is placed a member of the derived ornithomimosaurs. The present specimen is the first ornithomimid record from eolian Tögrögiin Shiree locality, and is indicative of their capability to adapt to arid environments.



Systematic paleontology
Dinosauria Owen, 184224.
Theropoda Marsh, 188125.

Ornithomimosauria Barsbold, 197626.
Ornithomimidae Marsh, 189027.

Aepyornithomimus tugrikinensis gen. et sp. nov.

Etymology: The generic name refers to the largest ratite bird Aepyornis~, which has similar pes structure; in Latin, ~mimus = ‘as’ or ‘like’; the species name tugrikinensis refers to the locality where the specimen was found.

Holotype: MPC-D 100/130, articulated left pes preserved with an astragalus that is missing the ascending process, a complete calcaneum, and distal tarsal III (DT-III) (Figs 2, 3 and 4). The original specimen is now housed in the Institute of Paleontology and Geology of the Mongolian Academy of Sciences (IPG-MAS).


Type locality and horizon: Central Sayr of Tögrögiin Shiree locality, Upper Cretaceous Djadokhta Formation (Campanian) (Fig. 1). This locality is interpreted as semi-arid eolian sediments28 with up to 52 m of light gray, cross-bedded, structureless sands and sandstones17.

Diagnosis: An ornithomimid dinosaur with the following unique characters; unevenly developed pair concavities on the posterior margin of the DT-III; robust distal articular caput of second metatarsal (Mt II) in dorsal view; proximoventrally rounded ridge of phalanx II-1 (II-1); the elongate fourth digit; laterally inclined medial condyle of phalanx IV-1 (IV-1); elongated pedal unguals.

Illustration by Masato Hattori 

Figure 8: Comparative graph and restoration drawing of Aepyornithomimus tugrikinensis.
 (a), Different proportions of the three metatarsals is represented by ternary diagram, (b), Illustration is drawn by Mr. Masato Hattori.
Abbreviations: (Mt II), the metatarsal II, (Mt III), the metatarsal III, and (Mt III), the metatarsal III, (Ω), Aepyornithomimus tugrikinensis, (Δ), basal ornithomimosaurs, (Π), deinocheirids, (†), ornithomimids. 

Chinzorig Tsogtbaatar, Yoshitsugu Kobayashi, Tsogtbaatar Khishigjav, Philip J. Currie, Mahito Watabe and Barsbold Rinchen. 2017. First Ornithomimid (Theropoda, Ornithomimosauria) from the Upper Cretaceous Djadokhta Formation of Tögrögiin Shiree, Mongolia.  Scientific Reports. 7, Article number: 5835. DOI:  10.1038/s41598-017-05272-6
  

[Paleontology • 2017] Owadowia borsukbialynickae • A New Pancryptodiran Turtle from the Late Jurassic of Poland and Palaeobiology of Early Marine Turtles


 Owadowia borsukbialynickae
Szczygielski, Tyborowski & Błażejowski, 2017


Abstract

Although Western Europe has yielded numerous Jurassic turtle taxa, several represented by cranial material or complete skeletons, the fossil record of the Jurassic turtles remains scarce to the north and east from Germany. Although some Late Jurassic testudinates were historically described from Poland, they were, thus far, represented by fragmentary remains that never were properly figured or described in detail. Therefore, very little is known about the mid-Mesozoic diversity of turtles in that region of the continent. A new pancryptodiran turtle genus and species, Owadowia borsukbialynickae, is described from the uppermost Jurassic (Tithonian, ca. 148 Ma) carbonate sediments of the Kcynia Formation in Owadów-Brzezinki Quarry, near Tomaszów Mazowiecki in central Poland. The lower jaw morphology and palaeoecological setting inhabited by the new genus and species, together with the trophic relationships of the Jurassic pancryptodiran turtles, are discussed in an attempt to determine the potential range of mode of life of O. borsukbialynickae. We propose that the new specimen belongs to a new durophagous pancryptodiran turtle taxon. O. borsukbialynickae might have spent considerable time in the marine environment and specialized on eating hard-shelled invertebrates like bivalves and decapod crustaceans, common to that setting.


Figure 5: Owadowia borsukbialynickae, life restoration during feeding on decapod crustacean.
Digital painting by T. Szczygielski 

SYSTEMATIC PALAEONTOLOGY

Order Testudinata Klein, 1760
Pancryptodira Joyce, Parham, & Gauthier, 2004
Incertae sedis

Genus Owadowia gen. nov.

Type species. Owadowia borsukbialynickae sp. nov.

Etymology. Owadowia, from Owadów-Brzezinki Quarry—the locality where remains of this new turtle were found.
Owadowia borsukbialynickae sp. nov.

Etymology. borsukbialynickae, in honour to the Polish palaeontologist, Prof. Magdalena Borsuk-Białynicka—a long time researcher of the Mesozoic reptiles.

Type specimen. ZPAL V/O-B/1959 (Figures 2-4), stored in the collections of the Institute of Palaeobiology, Polish Academy of Sciences in Warsaw, a fragment of the lower jaw, right coracoid, right ilium, and mostly complete right femur.

Type locality. Owadów-Brzezinki Quarry of Nordkalk GmbH, Sławno, close to Tomaszów Mazowiecki (Central Poland). 

Occurrence. Kcynia Formation, Tithonian, Upper Jurassic; the first lithofacial unit within Zaraiskites zarajskensis subzone.

Diagnosis. Relatively large Jurassic turtle (estimated carapace length around 50 cm) with narrow and V-shaped lower jaw, relatively short and wide but pronounced snout, massive, spoon-like symphysis, no symphyseal hook, well-developed triturating surface in the symphyseal area, moderately developed triturating surface with parallel lingual and labial ridges along the mandibular rami, the labial ridge much higher and sharper than the lingual ridge, the lingual ridge only present laterally and gradually disappearing towards the midline of the symphyseal area, splenial large. The triangular, symmetrical coracoid plate without anterior or posterior expansions, the coracoid neck without coracoid foramen. The slender and proximally and distally slightly curved femur with deep, U-shaped intertrochanteric fossa, small fibular condyle and prominent, well-developed tibial condyle. The ilium with expanded ventral end, constricted neck and well-developed, thin dorsal fan with posterior and no anterior expansion, no signs of sutural attachment to the carapace.


CONCLUSIONS
A new pancryptodiran turtle, Owadowia borsukbialynickae, is described from the Tithonian lagoon limestones of Owadów-Brzezinki Quarry, Poland. The most characteristic trait of this new taxon is its expanded triturating surface indicating a durophagous ecology. The morphology of O. borsukbialynickae mandible is unlike that any other Jurassic turtle known thus far, but rather resembles the Cretaceous protostegids and recent cheloniids, which suggests that this turtle might have inhabited a similar trophic niche. While it is possible that O. borsukbialynickae was a semiaquatic or freshwater turtle, the lower jaw morphology and its inferred feeding preferences make such assumption unlikely, and rather suggest that this animal spent a lot of time in a shallow water, possibly marine environment, like Owadów-Brzezinki lagoons. The taphonomic evidence (the quantitative dominance of marine vertebrates in the Owadów-Brzezinki bone-bed, lack of any brackish and freshwater taxa, and absence of transportation) suggests that O. borsukbialynickae was an inhabitant of these lagoons, rather than a terrestrial animal that inhabited the adjacent land. Such assumptions may be supported in the future by new finds and isotope data.


Tomasz Szczygielski, Daniel Tyborowski and Błażej Błażejowski. 2017. A New Pancryptodiran Turtle from the Late Jurassic of Poland and Palaeobiology of Early Marine Turtles. Geological Journal. DOI: 10.1002/gj.2952

Thursday, July 20, 2017

[Herpetology • 2017] Liolaemus gardeli • A New Species of Lizard of the L. wiegmannii group (Iguania: Liolaemidae) from the Uruguayan Savanna


Liolaemus gardeli 
Verrastro, Maneyro, da Silva & Farias, 2017

 DOI:  10.11646/zootaxa.4294.4.4 ภาพ

Abstract

Lizards of the Liolaemus wiegmannii group comprise 11 species that are widely distributed east of the Andes, occurring in Argentina, Uruguay, and Brazil. Here we analyzed a population of the genus Liolaemus, found in the Pampa region of Uruguay, on isolated sand dunes along the Tacuarembó River. We conducted biometric, meristic, and genetic comparisons between this population and other populations of L. weigmannii from Argentina and Uruguay, and the other species of the L. weigmannii complex. Our morphological and genetic analyses showed that this population represents to a new species of the genus Liolaemus, belonging to the L. wiegmannii group. To date, its known distribution is extremely restricted.

Keywords: Reptilia, endemic species, phylogeny, sand habitat, Pampa biome



  
 Laura Verrastro, Raúl Maneyro, Caroline M. da Silva and Iraia Farias. 2017. A New Species of Lizard of the L. wiegmannii group (Iguania: Liolaemidae) from the Uruguayan Savanna. Zootaxa. 4294(4); 443–461. DOI:  10.11646/zootaxa.4294.4.4

Wednesday, July 19, 2017

[Herpetology • 2017] Oligodon saiyok | งูงอดไทรโยค • A New Limestone-dwelling Kukri Snake (Serpentes: Colubridae) from Kanchanaburi Province, western Thailand


Oligodon saiyok 
 Sumontha, Kunya, Dangsri & Pauwels, 2017

  งูงอดไทรโยค | Sai Yok Kukri Snake ||  DOI: 10.11646/zootaxa.4294.3.2 

Abstract

We describe Oligodon saiyok sp. nov. from Benjarat Nakhon Cave Temple, Sai Yok District, Kanchanaburi Province, western Thailand. It is characterized by a maximal known SVL of 626.1 mm; 13 maxillary teeth, the posterior two enlarged; 8 supralabials; 17-17-15 dorsal scale rows; 181–187 ventrals and 38–43 subcaudals; a single anal; hemipenes extending in situ to the 18th subcaudal; dorsum with 21–22 dark blotches or white rings without vertebral or lateral stripes; and venter with a dense network of subrectangular dark blotches. It is the 7th squamate species believed to be endemic to Sai Yok District.

Keywords: Reptilia, Thailand, Oligodon saiyok sp. nov., new species, taxonomy, limestone cave, Buddhist temple


FIGURE 1. Live holotype of Oligodon saiyok sp. nov. Photograph by K. Kunya.


Etymology. The specific epithet is an invariable noun in honor of the administrative district where the type locality lies. We suggest the following common names: Ngu Ngod Sai Yok - งูงอดไทรโยค (Thai), Sai Yok Kukri Snake (English), Oligodon de Saï Yok (French), and Sai Yok Kukrinatter (German).

....
Oligodon saiyok sp. nov. increases the already exceptionally high number of squamates endemic to Sai Yok District, still unexplained to date: Cnemaspis huaseesom Grismer, Sumontha, Cota, Grismer, Wood, Pauwels & Kunya, 2010, Cyrtodactylus saiyok Panitvong, Sumontha, Tunprasert & Pauwels, 2014 and C. tigroides Bauer, Sumontha & Pauwels, 2003, Dixonius hangseesom Bauer, Sumontha, Grossmann, Pauwels & Vogel, 2004, Gekko nutaphandi Bauer, Sumontha & Pauwels, 2008, and Trimeresurus kanburiensis Smith, 1943 (see David et al. 2004). ....



Montri Sumontha, Kirati Kunya, Siriwat Dangsri and Olivier S. G. Pauwels. 2017.  Oligodon saiyok, A New Limestone-dwelling Kukri Snake (Serpentes: Colubridae) from Kanchanaburi Province, western Thailand. Zootaxa. 4294(3); 316–328. DOI: 10.11646/zootaxa.4294.3.2
ResearchGate.net/publication/318529308_Oligodon_saiyok_a_new_limestone-dwelling_kukri_snake_Serpentes_Colubridae_from_Kanchanaburi_Province_western_Thailand


[Ichthyology • 2017] Sex-specific Evolution during the Diversification of Live-bearing Fishes


Samples of fish species from the Poeciliidae family show the diversity in color, fin size and body shape. Kansas State University researchers studied 112 species of these live-bearing fishes and found that males and females evolve differently.


Abstract
Natural selection is often assumed to drive parallel functional diversification of the sexes. But males and females exhibit fundamental differences in their biology, and it remains largely unknown how sex differences affect macroevolutionary patterns. On microevolutionary scales, we understand how natural and sexual selection interact to give rise to sex-specific evolution during phenotypic diversification and speciation. Here we show that ignoring sex-specific patterns of functional trait evolution misrepresents the macroevolutionary adaptive landscape and evolutionary rates for 112 species of live-bearing fishes (Poeciliidae). Males and females of the same species evolve in different adaptive landscapes. Major axes of female morphology were correlated with environmental variables but not reproductive investment, while male morphological variation was primarily associated with sexual selection. Despite the importance of both natural and sexual selection in shaping sex-specific phenotypic diversification, species diversification was overwhelmingly associated with ecological divergence. Hence, the inter-predictability of mechanisms of phenotypic and species diversification may be limited in many systems. These results underscore the importance of explicitly addressing sex-specific diversification in empirical and theoretical frameworks of evolutionary radiations to elucidate the roles of different sources of selection and constraint.


Samples of fish species from the Poeciliidae family show the diversity in color, fin size and body shape. Kansas State University researchers studied 112 species of these live-bearing fishes and found that males and females evolve differently.

  

 Conclusions 
Some of our most basic tenets and enduring theories of evolution have come from systems in which phenotypes or species have diversified in response to putatively clear and strong sources of selection. However, even in those systems, evolutionary dynamics are more complex than previously assumed. Compartmentalizing our understanding of diversification into male or female (or, worse yet, sex averages), natural or sexual selection, phenotypic or species patterns, and micro- or macroevolution provides an incomplete assessment of evolutionary patterns and processes. Only integrative analysis of evolutionary dynamics across these areas will allow us to develop robust understanding of the origins of biodiversity.


Zachary W. Culumber and Michael Tobler. 2017. Sex-specific Evolution during the Diversification of Live-bearing Fishes.
 Nature Ecology & Evolution. DOI: 10.1038/s41559-017-0233-4

A tale of two fishes: Biologists find male, female live-bearing fish evolve differently
 phy.so/419594245 via @physorg_com


[Botany • 2017] Thismia sahyadrica • The First Record of the Mycoheterotrophic Genus, Thismia (Thismiaceae), to the Flora of India with A New Species Revealing the Phytogeographical Significance of Western Ghats


Thismia sahyadrica  Sujanapal, Robi & Dantas


 Abstract 
Thismia, a genus of mycoheterotrophic plants, is reported for the first time from mainland India, from Neryamangalam forests in Idukki district of Kerala, along with a new species, T. sahyadricaThismia sahyadrica, described and illustrated here, is unique within Thismia in having a mitre with a single opening; five perianth lobes are fused into a mitre-like structure, while the sixth one is free, forming a lateral single opening of the flower. Due to its unique morphological characteristics, the taxonomic placement of the new species remains obscure, although some root and flower characters suggest an affinity with species from the sections GlaziocharisSarcosiphonGeomitra, and Scaphiophora. Ecological specificity and phytogeographical peculiarities of the new species are also discussed.

Keywords: Kerala; Thismia; Western Ghats; mycoheterotrophy


Fig. 2 Thismia sahyadrica Sujanapal, Robi & Dantas.
 a. Habitat; b– c. habit; d. young flowers; e. plants with flowers; f. flowers enlarged with pedicel and bract.
 — Photos by A.J. Robi. 


  

Thismia sahyadrica Sujanapal, Robi & Dantas, sp. nov. 

 Thismia sahyadrica differs from all other species of Thismia in having a mitre with a single opening; it is further characterized by a brownish hypanthium, greenish yellow perianth lobes, a yellow ovary, and two fused outer perianth lobes and spreading third one. 
— Type:
A.J. Robi & K.J. Dantas 28097 (holotype KFRI; isotypes CALI, K, L, MH), India, Kerala, Idukki dist., Neryamangalam, ± 500 m, 14 July 2014.

 Etymology. The specific epithet ‘sahyadrica’ refers to the Sahyadri HillsWestern Ghats, where the type locality of the species is located.


 P. Sujanapal, A.J. Robi, K.J. Dantas, M. Sumod and V.S.F.T. Merckx. 2017. Thismia (Thismiaceae): The First Record of the Mycoheterotrophic Genus to the Flora of India with A New Species Revealing the Phytogeographical Significance of Western Ghats.
 Blumea - Biodiversity, Evolution and Biogeography of Plants. 62;  97–102.  DOI:  10.3767/blumea.2017.62.2.04


[Paleontology • 2017] The Taxonomy and Phylogeny of Diopecephalus kochi (Wagner, 1837) and ‘Germanodactylus rhamphastinus (Wagner, 1851)


Altmuehlopterus Vidovic & Martill, 2017
Altmuehlopterus rhamphastinus  (Wagner, 1851)

Fig. 2. ‘Germanodactylus rhamphastinus’ – photographs and interpretative drawings of the slabs (a) BSP AS I 745 b and (b) BSP AS I 745 a. Abbreviations: pc, premaxillary crest; st, sternum.

The Solnhofen pterosaurs Pterodactylus antiquus, Aerodactylus scolopaciceps, Diopecephalus kochi, Germanodactylus cristatus and Germanodactylus rhamphastinus all have complicated taxonomic histories. Species originally placed in the genus Pterodactylus, such as Aerodactylus scolopaciceps, Ardeadactylus longicollum, Cycnorhamphus suevicus and Germanodactylus cristatus possess apomorphies not observed in the type species of Pterodactylus, and consequently have been placed in new genera. The affinities of another Solnhofen pterosaur previously placed in Pterodactylus, Diopecephalus kochi, are less clear. It has been proposed that D. kochi is a juvenile specimen of Pterodactylus antiquus, or perhaps ‘Germanodactylus rhamphastinus’ specimens are mature examples of D. kochi. Furthermore, studies have suggested that ‘Germanodactylus rhamphastinus’ is not congeneric with the type species of Germanodactylus. Geometric morphometric analysis of prepubes and a cladistic analysis of the Pterosauria elucidate plesiomorphic and apomorphic conditions for basal Jurassic pterodactyloids. Germanodactylus is found to be a monotypic genus and Pterodactylus, Diopecephalus, and ‘G. rhamphastinus’ are found as distinct taxa belonging in individual genera, diagnosable using a combination of characters. Thus, Diopecephalus kochi is not demonstrated to be congeneric with Germanodactylus or Pterodactylus and is maintained as a valid taxon. ‘G. rhamphastinus’ is readily distinguishable from other Solnhofen pterosaur taxa, and a new genus is erected for its reception.


......


Altmuehlopterus gen. nov.

Derivation of name.Altmuehl’ refers to the Altmühl river that flows through Solnhofen (close to Mörnsheim), Eichstätt and joins the river Danube at Kelheim. ‘Pterus’ is a common suffix in pterosaur names referring to the wing. This name is presented as an alternative to the geographically significant name Daitingopterus (Maisch et al., 2004) which is a nomen nudum. 

Type species: Altmuehlopterus rhamphastinus (Wagner, 1851) 

Fig. 3. Germanodactylus cristatus – (a) a photograph of most of the skeleton on the slab and (b) a line drawing of the skull of the holotype BSP 1892 IV 1.

Fig. 10. Cranial characters and prepubes of Franconia laminated limestone pterosaurs plotted onto a pruned tree. The tree is plotted against the ‘fine scale’ dating criteria of the Franconia laminated limestones (Schweigert 2007).


Steven U. Vidovic and David M. Martill. 2017. The Taxonomy and Phylogeny of Diopecephalus kochi (Wagner, 1837) and ‘Germanodactylus rhamphastinus (Wagner, 1851). Geological Society, London. Special Publications. (2017); SP455.12. DOI: 10.1144/SP455.12

[Herpetology • 2017] The Taxonomic Status and Distribution Range of Six Theloderma Species (Anura: Rhacophoridae) with A New Record in China


Theloderma moloch (Annandale, 1912)
Yunnan, China, 1000 m elevation.

Photo by Mian Hou 

Abstract

The problems of identification, number and distribution of Theloderma species living in China are discussed on the base of new original morphological and molecular data collected during the last years. According to the author’s results there are six known Theloderma species living in China: Theloderma albopunctatum (Liu et Hu, 1962), Theloderma baibungense Jiang, Fei et Huang, 2007, Theloderma bicolor (Bourret, 1937), Theloderma corticale (Boulenger, 1903), Theloderma moloch (Annandale, 1912), and Theloderma rhododiscus Liu et Hu, 1962.

Keywords: taxonomy; distribution; Theloderma; new records; China


Theloderma corticale (Boulenger, 1903)
English name. Tonkin Bug-eyed Frog, Kwangsi Warty Treefrog.
Etymology. The specific epithet is derived from Latin “cortex,” genit. cortices or corticulus, means bark.
Distribution. Known from south China, Laos, and Vietnam.

Theloderma bicolor (Bourret, 1937)
English name. Chapa Bug-eyed Frog. 
Etymology. the specific epithet is derived from Latin “bis,” means two, twice; and color is from Latin “color,” as hue, tint or complexion.
Distribution. Northwest to central Vietnam; southwest China.


 Theloderma moloch  (Annandale, 1912)

Theloderma asperum species group, such as Theloderma albopunctatum (southern China to central Indochina), Theloderma baibungense (SE Himalaya) and T. asperum (south Indochina to Malaysian Peninsula).

Theloderma rhododiscus  Liu et Hu, 1962

....

According to above discussion, currently there are six known Theloderma species in China, such as Theloderma albopunctatum (Liu et Hu, 1962), Theloderma baibungense Jiang, Fei et Huang, 2007, Theloderma bicolor (Bourret, 1937), Theloderma corticale (Boulenger, 1903), Theloderma moloch (Annandale, 1912), and Theloderma rhododiscus Liu et Hu, 1962 



Hou Mian, Yu Guo-Hua, Chen Hong-man, Liao Chang-Le, Zhang Li, Chen Jin, Li Pi-Peng and Nikolai L. Orlov. 2017. The Taxonomic Status and Distribution Range of Six Theloderma Species (Anura: Rhacophoridae) with A New Record in China.
 Russian Journal of Herpetology. 24(2); 91-127. 
ResearchGate.net/project/Theloderma-Taxonomy-of-China
 Theloderma in China (Anura: Rhacophoridae); Taxonomic Status and Distribution Range 


Tuesday, July 18, 2017

[Mammalogy • 2017] Deltamys araucaria • A New Species of Deltamys Thomas, 1917 (Rodentia: Cricetidae) Endemic to the southern Brazilian Araucaria Forest and Notes on the Expanded Phylogeographic Scenario of D. kempi


Deltamys araucaria
Quintela, Bertuol, González, Cordeiro-Estrela, de Freitas & Gonçalves, 2017


Abstract

Deltamys is a monotypic sigmodontine rodent from the Pampas of South America. In addition to the formally recognized D. kempi that inhabits lowlands, an undescribed form Deltamys sp. 2n=40 was recently found in the highlands of southeastern Brazil. In the present study, we perform a phylogeographic reassessment of Deltamys and describe a third form of the genus, endemic to the Brazilian Araucaria Forest. We describe this new species based on an integrative analysis, using complete cytochrome b DNA sequences, karyology and morphology. Bayesian tree recovered two allopatric clades (lowlands vs. highlands) and three lineages: (i) the lowland D. kempi, (ii) the highland Deltamys sp. 2n=40, and (iii) Deltamys araucaria sp. n. Deltamys araucaria sp. n. is karyotypically (2n=34) and morphologically distinguishable from D. kempi (2n=37-38), showing a tawnier dorsum/flank pelage, presence of a protostyle, M1 alveolus positioned anteriorly to the posterior margin of the zygomatic plate, and several other distinguishing characteristics. A phylogeographic assessment of D. kempi recovered two haplogroups with significant differences in skull measurements. This phylogeographic break seems to have been shaped by the Patos Lagoon estuarine channel. The diversification in Deltamys might have been triggered by dispersal of older lineages over different altitudinal ranges in the Paraná geological basin.

Keywords: Mammalia, Akodontini, altitudinal gradient, cytochrome b, dispersal, evolution



Fernando M. Quintela, Fabrício Bertuol, Enrique M. González, Pedro Cordeiro-Estrela, Thales Renato Ochotorena de Freitas and Gislene Lopes Gonçalves. 2017. A New Species of Deltamys Thomas, 1917 (Rodentia: Cricetidae) Endemic to the southern Brazilian Araucaria Forest and Notes on the Expanded Phylogeographic Scenario of D. kempi.
 Zootaxa. 4294(1); 71–92. DOI:  10.11646/zootaxa.4294.1.3


[Paleontology • 2017] Albertavenator curriei • A New Species of Troodontid Theropod (Dinosauria: Maniraptora) from the Horseshoe Canyon Formation (Maastrichtian) of Alberta, Canada



Albertavenator curriei 
Evans, Cullen, Larson & Rego, 2017


ABSTRACT

Troodontid material from the Maastrichtian of North America is extremely rare, beyond isolated teeth from microvertebrate sites. Here we describe troodontid frontals from the early Maastrichtian Horseshoe Canyon Formation (Horsethief Member). The most complete specimen, TMP 1993.105.0001, is notably foreshortened and robust when compared with numerous specimens referred to Troodon from the Dinosaur Park Formation, and exhibits several characteristics that distinguish it from other Late Cretaceous troodontids. Morphometric analyses reinforce shape differences between TMP 1993.105.0001 and other North American troodontids, and show that proportional differences are independent of size. We therefore erect a new taxonAlbertavenator curriei gen. et sp. nov., which is diagnosed by the following autapomorphies: (1) primary supraciliary foramen is truncated anteriorly by the lacrimal contact; (2) superficial (ectocranial) surface of the frontal proportionally shorter than all known troodontids, with a length to width ratio under 1.3; and (3) frontoparietal contact in which an enlarged lappet of the frontal extends medially to extensively overlap the lateral region of the anteromedial process of the parietal. Interestingly, tooth and jaw morphology from the single relatively complete dentary recovered from the Horseshoe Canyon cannot be distinguished from dentaries and teeth from the Dinosaur Park Formation. If the dentary and teeth from the Horsethief Member of the Horseshoe Canyon Formation prove to belong to A. curriei, extensive overlap in tooth morphology between the Dinosaur Park and Horseshoe Canyon formations reinforces the notion that tooth morphotypes do not exhibit strong correspondence to species alpha diversity, and may encompass multiple closely related taxa.

Life recreation of Albertavenator curriei.
 Illustrated by Oliver Demuth 







Comparison of 3D frontal models in dorsal, lateral, ventral, medial, anterior, and posterior, respectively, of Albertavenator curriei (top) and Troodon inequalis.


Abbreviations: fc – frontal midline contact, lc – lacrimal contact with frontal, lcb – lacrimal buttress, lsc – laterosphenoid contact with frontal, nc – nasal contact with frontal, or – orbital rim, pc – parietal contact with frontal, pl – parietal lappet, poc – postorbital contact with frontal, scf – supraciliary foramen. Scale bar – 1 cm. 


 .   
David C. Evans, Thomas M. Cullen, Derek W. Larson and Adam Rego. 2017. A New Species of Troodontid Theropod (Dinosauria: Maniraptora) from the Horseshoe Canyon Formation (Maastrichtian) of Alberta, Canada.
 Canadian Journal of Earth Sciences. DOI: 10.1139/cjes-2017-0034

Albertavenator curriei: New Species of Bird-Like Dinosaur Identified in Canada || 
Scientists name new species of dinosaur after Canadian icon http://phy.so/419501502 via @physorg_com


[Crustacea • 2017] Xangoniscus itacarambiensis • A New Amphibious Troglobitic Styloniscid (Isopoda, Oniscidea, Synocheta) from Brazil


Xangoniscus itacarambiensis
 Pereira, Souza & Ferreira, 2017


Abstract

Xangoniscus (Styloniscidae, Synocheta, Isopoda) includes only two species, both occurring in Brazil. Here a new amphibious troglobitic species of this genus found at Olhos D’Água Cave, Northern Minas Gerais, Brazil, is described. Xangoniscus itacarambiensis sp. nov. differs from the congeneric species mainly due to the following characters: head well-detached from the first pereonite, second and third articles of antennula subequal in length, presence of six short aesthetascs in the antennula and reduced triangular lobe in the distal part of pleopod 2 endopod.

Keywords: Isopoda, Styloniscidae, Xangoniscus, Brazil




Rafaela Bastos Pereira, Leila Aparecida Souza and Rodrigo Lopes Ferreira. 2017. A New Amphibious Troglobitic Styloniscid from Brazil (Isopoda, Oniscidea, Synocheta). Zootaxa. 4294(2); 292–300.  DOI:  10.11646/zootaxa.4294.2.11

[Crustacea • 2017] Homolidae from the South China Sea, with Descriptions of Two New Species of Homologenus A. Milne-Edwards, in Henderson, 1888, and the Identities of Homologenus malayensis and Lamoha superciliosa


Fig. 24.   Homolidae from the  South China Sea. Colour in life.
ALamoha longirostris (Chen, 1986), female (24.9 × 20.3 mm);
 
BLamoha murotoensis (Sakai, 1979), male (20.8 × 18.4 mm); CParomola macrochira Sakai, 1961, female (16.5 × 11.4 mm); DParomola macrochira Sakai, 1961, female (16.3 × 11.1 mm); EMoloha majora (Kubo, 1936), male (54.8 × 47.8 mm); FHomolochunia gadaletae Guinot & Richer de Forges, 1995, ovigerous female (34.1 × 26.4 mm); GHomolomania sibogae Ihle, 1912, male (15.4 × 11.3 mm); HParomolopsis boasi Wood-Mason, in Wood-Mason & Alcock, 1891, male (20.1 × 17.7 mm). 

Ng & Richer de Forges, 2017. RAFFLES BULLETIN OF ZOOLOGY. 65

Abstract
 Recent collections from southern Taiwan and the South China Sea obtained 10 species of homolid crabs, of which two species of Homologenus A. Milne-Edwards, in Henderson, 1888, are described as new. The taxonomy of the allied H. malayensis Ihle, 1912, from Indonesia and Papua New Guinea is also clarified. The identity of Lamoha superciliosa (Wood-Mason, in Wood-Mason & Alcock, 1891) s. str. from the Indian Ocean is discussed and specimens from East Asian seas that had been referred to this species are here shown to be conspecific with L. longirostris (Chen, 1986) instead. The taxonomy of L. superciliosa and L. longirostris is treated.

 Key words. Taxonomy, new species, South China Sea, deep sea, homolid crabs, Homologenus


Fig. 24. Colour in life, AH from South China Sea;
I, J from Papua New Guinea and Bismarck Sea.
A, Lamoha longirostris (Chen, 1986), female (24.9 × 20.3 mm) (ZRC 2016.0555); B, Lamoha murotoensis (Sakai, 1979), male (20.8 × 18.4 mm) (ZRC 2016.0200); C, Paromola macrochira Sakai, 1961, female (16.5 × 11.4 mm) (ZRC 2016.0560); D, Paromola macrochira Sakai, 1961, female (16.3 × 11.1 mm) (ZRC 2016.0562); E, Moloha majora (Kubo, 1936), male (54.8 × 47.8 mm) (ZRC 2016.0197); F, Homolochunia gadaletae Guinot & Richer de Forges, 1995, ovigerous female (34.1 × 26.4 mm) (ZRC 2016.0198); G, Homolomania sibogae Ihle, 1912, male (15.4 × 11.3 mm) (ZRC 2016.0199); H, Paromolopsis boasi Wood-Mason, in Wood-Mason & Alcock, 1891, male (20.1 × 17.7 mm) (ZRC 2016.0565);
I, Homologenus malayensis Ihle, 1912, ovigerous female (16.0 × 13.9 mm) (MNHN-IU-2015-80); J, Homologenus malayensis Ihle, 1912, ovigerous female (14.9 × 9.9 mm) (MNHN-IU-2014-8052). 

Homologenus exilis n. sp.

Etymology. From the Latin “exilis” meaning “thin or slender”, alluding to the relatively long ambulatory legs of the species when compared to the other new species, H. brevipes. Used as a noun in apposition.

Homologenus brevipes n. sp. 

Etymology. The name alludes to the relatively shorter ambulatory legs of this species when compared to those of the allied new species, H. exilis. Used as a noun in apposition.




Peter K. L. Ng and Bertrand Richer de Forges. 2017. On A Collection of Homolidae from the South China Sea, with Descriptions of Two New Species of Homologenus A. Milne-Edwards, in Henderson, 1888, and the Identities of Homologenus malayensis Ihle, 1912, and Lamoha superciliosa (Wood-Mason, in Wood-Mason & Alcock, 1891).
 RAFFLES BULLETIN OF ZOOLOGY. 65: 243–268.